Simplify the expression given below.
1|2x^2-4x-2/x

Answer:
[tex]\large\boxed{D.\ \dfrac{-4x+9}{2x(x-2)}}[/tex]
Step-by-step explanation:
[tex]\dfrac{1}{2x^2-4x}-\dfrac{2}{x}=\dfrac{1}{2x(x-2)}-\dfrac{2}{x}=\dfrac{1}{2x(x-2)}-\dfrac{(2)(2)(x-2)}{2x(x-2)}\\\\=\dfrac{1-4(x-2)}{2x(x-2)}\qquad\text{use the distributive property}\\\\=\dfrac{1-4x+8}{2x(x-2)}=\dfrac{-4x+9}{2x(x-2)}[/tex]
Answer:
The correct option is D.
Step-by-step explanation:
Consider the provided expression.
[tex]\frac{1}{2x^2-4x}-\frac{2}{x}[/tex]
Now take the LCM of the denominator and solve the above expression as shown:
[tex]\frac{x-2(2x^2-4x)}{x(2x^2-4x)}[/tex]
[tex]\frac{x-4x^2+8x}{x(2x^2-4x)}[/tex]
[tex]\frac{9x-4x^2}{x(2x^2-4x)}[/tex]
Cancel out the x as it is common in numerator and denominator.
[tex]\frac{9-4x}{2x^2-4x}[/tex]
[tex]\frac{-4x+9}{2x(x-2)}[/tex]
Hence, the correct option is D.