Respuesta :
Answer:
The required marginal profit function is: [tex](MP(q))=-6q+726[/tex]
Explanation:
The marginal profit is the profit earned by producing one extra unit of the product.
The revenue function is [tex]R(q)=-3q^2+900q[/tex]
The cost function is [tex]C(q)=174q+33750[/tex]
The profit function is [tex]P(q)=R(q)-C(q)[/tex]
[tex]\implies P(q)=-3q^2+900q-(174q+33750)[/tex]
[tex]\implies P(q)=-3q^2+900q-174q-33750[/tex]
[tex]\implies P(q)=-3q^2+726q-33750[/tex]
The marginal profit is the derivative of the profit function.
[tex]\implies (MP(q))=-6q+726[/tex]
Therefore the required marginal profit function is: [tex](MP(q))=-6q+726[/tex]
The required marginal profit function is (M P(q)) = -6q + 726.
Calculation of marginal profit function:
Since the marginal profit should be profit earned by generating one extra unit of the product.
Now
The revenue function is [tex]R ( q ) = - 3 q^2 + 900 q[/tex]
Now the cost function is C ( q ) = 174 q + 33750
And, the profit function is P(q) = R(q) - C(q)
So,
[tex]= -3q^2 + 900q - (174q + 33750)\\\\= -3q^2 + 900q - 174q - 33750\\\\= -3q^2 + 726q - 33750[/tex]
Now the profit function is (M P(q)) = -6q + 726.
Learn more about profit here: https://brainly.com/question/1131010