Answer: Inconsistent.
Step-by-step explanation:
The equation of the line in Slope-intercept form is:
[tex]y=mx+b[/tex]
Where m is the slope and b is the y-intercept.
Solve for y from each equation:
Equation 1:
[tex]-\frac{1}{2} x = -6 - y\\\\y-\frac{1}{2} x = -6\\\\y=\frac{1}{2} x-6[/tex]
Equation 2:
[tex]3+y= \frac{1}{2} x + 4\\\\y= \frac{1}{2} x + 4-3\\\\y= \frac{1}{2} x+1[/tex]
A system of equations can be classified by its number of solutions.
You can observe that the slopes of both equations are the same but the y-intercepts are different, then these lines are parallel, which means that they do not intersect.
By definition, when to lines are parallel there is NO SOLUTION and the system is classified as "Inconsistent".