Respuesta :

Answer:

the numbers are [tex]4,6[/tex]

Step-by-step explanation:

Let

x-------> the smaller even consecutive integer

x+2-------> the larger even consecutive integer

we know that

[tex]x^{2}=(x+2)+10[/tex]

solve for x

[tex]x^{2}-x-12=0[/tex]

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]x^{2}-x-12=0[/tex]

so

[tex]a=1\\b=-1\\c=-12[/tex]

substitute in the formula

[tex]x=\frac{1(+/-)\sqrt{-1^{2}-4(1)(-12)}} {2(1)}[/tex]

[tex]x=\frac{1(+/-)\sqrt{49}} {2}[/tex]

[tex]x=\frac{1(+/-)7} {2}[/tex]

[tex]x=\frac{1(+)7} {2}=4[/tex]  ------> the solution (must be positive)

[tex]x=\frac{1(-)7} {2}=-3[/tex]

therefore

the numbers are [tex]4,6[/tex]

Two positive even consecutive numbers are [tex]4,6[/tex].

Let  [tex]x,\;x+2[/tex]  are two positive consecutive even number.

According to question,

[tex]x^2=(x+2)+10[/tex]

[tex]x^2-x-12=0[/tex]

Solve the quadratic equation,

[tex]x^2-4x+3x-12=0\\x(x-4)-3(x-4)=0\\(x-4)(x-3)=0\\\; x-4=0\\ \; x-3=0\\[/tex]

So [tex]x=3 , 4[/tex].

Positive even number is the requirement so [tex]3[/tex] is not a even number so eliminate.

Hence value of [tex]x[/tex] is [tex]4[/tex].

Two positive even consecutive numbers are [tex]4,6[/tex].

Learn more about quadratic equation here:

https://brainly.com/app/ask?q=quadratic