Respuesta :

Answer:

Option C. [tex]\$23,134.61[/tex]

Step-by-step explanation:

we know that

[tex]A=\frac{P[(1+r)^{n} -1]}{r(1+r)^{n}}[/tex]

we have

[tex]P=\$400[/tex]

[tex]r=0.075/12=0.00625[/tex]

[tex]n=6*12=72\ months[/tex]

substitute in the formula

[tex]A=\frac{400[(1+0.00625)^{72} -1]}{0.00625(1+0.00625)^{72}}\\ \\A=\frac{226.446972}{0.009788}\\ \\A=\$23,134.61[/tex]