Find the 4th term of the expansion
A
B
C
D

Answer:
option-A
Step-by-step explanation:
We can use rth term binomial expansion formula
[tex](x+y)^n[/tex]
[tex]T_r=(n,r-1)x^{n-(r-1)}y^{r-1}[/tex]
we are given
[tex](a-\sqrt{2})^8[/tex]
we can compare
[tex]x=a,y=-\sqrt{2}[/tex]
n=8
r=4
now, we can find 4th term
[tex]T_r=(8,4-1)a^{8-(4-1)}(-\sqrt{2})^{4-1}[/tex]
now, we can simplify it
[tex]T_4=\frac{8!}{5!3!}\times -2\sqrt{2}a^5[/tex]
[tex]T_4=56\times -2\sqrt{2}a^5[/tex]
[tex]T_4=-112\sqrt{2}a^5[/tex]
Answer:
Option A. [tex]=-112a^{5}\sqrt{2}[/tex]
Step-by-step explanation:
from the given formula of binomial [tex](a+b)^{n}=a^{n}+na^{n-1}b+\frac{n(n-1)}{2!}a^{n-2}b^{2}+\frac{n(n-1)(n-2)}{3!}a^{n-3}b^{3}.....b^{n}[/tex] we can calculate any term of this expansion.
Now from the question we have to find out the 4th term of [tex](a-\sqrt{2} )^{8}[/tex]
From the expansion fourth term will be [tex]\frac{n(n-1)(n-2)}{3!}a^{n-3}b^{3}[/tex]
Now we replace a=a, b=(-√2) and n=8
[tex]\frac{8(8-1)(8-2)}{3!}a^{8-3}(-\sqrt{(2)})^{3}[/tex]
[tex]= -\frac{8\times 7\times 6}{3\times 2\times 1}a^{5}(2)\sqrt{2}[/tex][tex]=-8\times 7a^5(2)\sqrt{2}[/tex]
[tex]=-112a^{5}\sqrt{2}[/tex]