Respuesta :

Answer:

[tex]\boxed{\sin(\theta)=-\frac{7}{58}\sqrt{58}}[/tex]

Step-by-step explanation

The given point [tex](3,-7)[/tex] tells us that the terminal side of [tex]\theta[/tex] is in the fourth quadrant.


From the diagram in the attachment,

We can use the Pythagoras Theorem to find the length of the hypotenuse of the right triangle.

Let the hypotenuse be [tex]h\: units[/tex]. Then,

[tex]h^2=7^2+3^2[/tex]


[tex]h^2=49+9[/tex]


[tex]h^2=58[/tex]


[tex]\Rightarrow h=\sqrt{58}[/tex]


Now we use the sine ratio;


[tex]\sin(\theta)=\frac{Opposite}{Hypotenuse}[/tex].


But since the terminal side of [tex]\theta[/tex] is in the fourth quadrant, the sine ratio must be negative.


This implies that;


[tex]\sin(\theta)=-\frac{7}{\sqrt{58}}[/tex].


We rationalize the denominator to get;


[tex]\sin(\theta)=-\frac{7}{58}\sqrt{58}[/tex].




Ver imagen kudzordzifrancis
lemion

Answer:

[tex]-\frac{7\sqrt{58}}{58}[/tex]

Step-by-step explanation:

Ver imagen lemion